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SUMMARY

In this paper iterative techniques for unsteady �ow computations with implicit higher order time in-
tegration methods at large time steps are investigated. It is shown that with a minimal coding e�ort
the standard non-linear multigrid method can be combined with a Newton–Krylov method leading to
speed-ups in the order of 30%. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The vast majority of �ow�elds encountered in engineering applications are unsteady. These
�ow�elds may include inherently unsteady �ow separation, unsteady boundary- and free-
shear �ows, as well as unsteady boundary conditions, possibly caused by �ow actuators.
In spite of this, since one is often concerned with only mean �ow quantities and steady
�ow�elds are less computationally demanding, unsteady �ow simulations have historically
been more rare. Contemporary computer resources now render three-dimensional unsteady
�ow�eld computation viable [1]. As these simulations consume vast computational resources,
their e�ciency is of great importance.
In a previous paper [2] we studied the relative e�ciency of implicit time integration

methods, concluding that already for engineering levels of accuracy fourth-order Runge Kutta
methods are more e�cient than second-order methods, for the problems that were tested.
As these methods allow for large time steps, major driver for e�ciency is then the iterative
solution method. The iterative solver originally used is pseudo-time stepping in combina-
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tion with non-linear multigrid (MG) and implicit residual smoothing. As also observed by
others, asymptotic convergence of this type of iterative solver for the computation of turbu-
lent �ows on high aspect ratio grids is poor. The question is whether e�ciency of the iterative
method can be improved for unsteady �ow calculations with limited changes to the current,
Jacobian-free, code. An obvious candidate for this is Newton linearization in combination
with a Krylov subspace technique. However, this method may fail when the initial guess is
far removed from the domain of convergence of the non-linear problem, which can occur
due to our large time steps. Furthermore, e�ciency of this method crucially depends on the
preconditioner. Combining the methods, using multigrid as a preconditioner and starting with
the non-linear multigrid pseudo-time stepping scheme only switching to Newton–Krylov when
convergence rates drop might be a good alternative.
There has been considerable success in applying the multigrid method as a preconditioner

on linear problems. As a result of this success researchers have applied linear multigrid as a
preconditioner to a Jacobian-free Newton–Krylov (JFNK) method, for a complete overview
see [3]. Recently, Mavriplis [4] has considered non-linear multigrid as a preconditioner to
JFNK with encouraging results. For the steady-state Navier–Stokes equations at high Reynolds
numbers, non-linear multigrid as a preconditioner generally outperformed non-linear multigrid
as a solver. However, the overall winner was consistently linear multigrid as a preconditioner
to JFNK. For unsteady �ow computations Jothiprasad et al. [5], recently obtained an e�ciency
improvement with a multigrid preconditioned Newton–Krylov method for relatively small time
steps with a second-order backward di�erencing time integration scheme. Another candidate
preconditioner is a Krylov method itself, as it can be easily implemented in a matrix-free
fashion. Flexible GMRES [6] and GMRES-R [7] methods were developed to address the
issue of using a Krylov preconditioner that may vary within the GMRES iteration. These
�exible accelerators open up a number of preconditioning options such as using a relaxation
method preconditioner with variable termination from outer to inner iteration.

2. THE METHOD

A generalized form of the classical unsteady thin-layer Navier–Stokes equations which
includes all normal components of the viscous terms is used to model the �ow. For tur-
bulent �ows the Reynolds average formulation is used in combination with the one equation
Spalart–Allmaras [8] turbulence model. The spatial terms are discretized using a standard
cell-centred �nite volume scheme. The convection terms are discretized with second-order
central di�erences with (second- and fourth-order di�erence) scalar=matrix dissipation added
to suppress odd–even decoupling and oscillations in the vicinity of shock waves and stagna-
tion points [9]. The viscous terms are central di�erences with a second-order formula. The
semi-discrete system of equations is denoted by:

R(U)=
dU
dt
+S(U(t))=0 (1)

where U is the conserved variable vector and the vector S results from semi-discretization
of the �uid mechanic equations. It contains convection and di�usion. Temporal integration of
Equation (1) is performed using an implicit fourth-order explicit �rst-stage diagonally implicit
Runge Kutta method (ESDIRK) which was shown to be very e�cient even for engineering
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levels of accuracy [2]. Using this multi-stage scheme, each stage a system of equations has to
be solved. In this paper the following iterative solution techniques are compared: a non-linear
multigrid or full approximation scheme (FAS) scheme and a Jacobian-free Newton–Krylov
method, unpreconditioned, preconditioned by the FAS scheme or used in a recursive fashion.

2.1. The FAS scheme

Each stage of the implicit time integration results in a non-linear algebraic set of equations
(see Equation (1)), that is solved using a FAS multigrid scheme. The smoother used on each
grid is derived by adding a pseudo-time term to Equation (1) and advancing two pseudo-
time steps with an explicit–implicit (IMEX) RK scheme. Local time stepping and implicit
residual smoothing are used to further increase the smoothing characteristics. Convergence in
pseudo-time is monitored and multigrid iterations are terminated when a speci�ed tolerance
is reached. For details, see References [2, 9].

2.2. The Jacobian-free Newton–Krylov method

In the Newton–Krylov method the system of non-linear equations is linearized using a Newton
method. The Newton method for R(U)=0 is equal to (see Reference [3] for more details):

A�U= −R(UN ); UN+1 =UN + �U (2)

given U0. Here, R(U) is the vector-valued function of non-linear residuals, A≡ @R=@U is
its associated Jacobian matrix, UN+1 is the N+1th Newton approximation of the state vector
at the new time level to be computed, and N is the iteration index of the previous Newton
iteration.
To solve the linear system Equation (2) a Krylov subspace method is used. We have

chosen the general conjugate residual (GCR) method, which is equal to the generalized min-
imal residual method (GMRES) storing not only the residual, but also the solution. This
GMRES variant with twice the storage makes it possible to use a variable preconditioner.
The unpreconditioned GCR algorithm to solve Ax= b, with b= −R(UN ) and x= �U, which
stores two search directions pk and qk , is:

GCR algorithm
x0 = 0; r0 = b−Ax0; k = −1
while ‖rk+1‖2 ¿ tol do

k = k + 1
pk = rk
qk = Apk
for i = 0; 1; : : : ; k − 1 do

�i = qTi qk ; qk = qk − �iqi ; pk = pk − �ipi
endfor
qk = qk =‖qk‖2; pk = pk =‖qk‖2
xk+1 = xk + pkqTk rk
rk+1 = rk − qkqTk rk

endwhile
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In order to limit the amount of programming required to speed-up our original Jacobian-
free solver, we use a Jacobian-free GCR implementation using the following �rst-order �nite
di�erence approximation:

Apk ≈ R(U
N + �pk)−R(UN )

�
(3)

This approximation is sensitive to scaling. If � is too large, it is a poor approximation, if
it is too small the �nite di�erence is contaminated by �oating point round-o� error. From
the ample choices of � reported for similar situations in the literature, for an overview see
Reference [3], we have chosen for

�=

√
(1 + ‖UN‖)�mach

‖pk‖ (4)

with �mach equal to machine precision.
Following Mavriplis [4] preconditioning by a FAS scheme is applied. Both left and right

preconditioning was implemented. Using Equation (3) left preconditioning in the GCR algo-
rithm comes down to

qk =P−1Apk ≈ P
−1R(UN + �pk)− P−1R(UN )

�
(5)

where P−1 is an approximation of A−1. FAS preconditioning of the terms in Equation (5) is
formulated using Equation (2) as:

−P−1R(UN )=P−1A�U=UMG−UN (6)

where UMG is the solution vector obtained after one or more FAS iterations, starting with
initial guess UN . The formulation for FAS right preconditioned GCR is obtained by:

pk =P−1rk ≈P−1R(UN + xk) (7)

which is computed using Equation (6). Also recursive GCR [7] was implemented. This is a
special right preconditioning, where GCR is used to compute UMG in Equation (6).

3. RESULTS

The e�ciency of the iterative solvers is investigated for an unsteady �ow test case. The test
problem is �ow around a two-dimensional circular cylinder at a Mach number of 0.3. Both
laminar �ow at a Reynolds number of 1000 and turbulent �ow with a Reynolds number of
106 is considered. For the laminar case a mesh of 129× 65 was used; for the turbulent case
a mesh of 129× 129. The computations were started from a solution in the periodic part of
time history, which was computed beforehand. For a grid re�nement study and a comparison
of various time integration schemes for this problem see Reference [2].
In Figure 1, convergence of the non-linear FAS scheme for one time step in the laminar

case is compared with the turbulent case. The �ve spikes are the initial residuals of the

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 47:857–862



ITERATIVE SOLUTION TECHNIQUES 861

Circular cylinder Re = 10
6 

Dt = 0.5, 129x129 mesh

-0.5

-1.5

-2.5

-3.5
0 5 10 15 20 25 30 35

Iterations / time step Iterations / time step

Laminar cylinder Re = 1000 
Dt = 0.5, 129x65 mesh

40 45 50

-1

-2

-3M
ax

 d
en

si
ty

 r
es

id
ua

l (
10

 lo
g)

M
ax

 d
en

si
ty

 r
es

id
ua

l (
10

 lo
g)

-0.5

-1.5

-2.5

-3.5
0 20 40 60 80 100 120 140 160 180 200

-1

-2

-3

Figure 1. Convergence history of FAS MG solver for laminar and turbulent �ow problem.

Table I. Work for laminar �ow problem using various iterative solvers.

No MG �rst 3 MG �rst 6 MG �rst

FAS MG 144 (12+0) 144 (12+0) 144 (12+0)
GCR5-20 234 (0+12) 185 (3+9) 107 (6+3)
GCR5 270 (0+54) 186 (3+30) 107 (6+7)
GCR5 rec2 1125 (0+75) 261 (3+14) 147 (6+5)
GCR5 rprec1MG 324 (0+6) 204 (3+3) 132 (6+1)

�ve implicit stages of the ESDIRK method. It can be seen that convergence deteriorates
signi�cantly for the sti�er case with the high Reynolds number and the high aspect ratio
grid. For the same non-dimensional time step of 0.5 and the same iterative tolerance of 0.005
for the turbulent case 193 FAS iterations are required compared to 50 for the laminar case.
Possible speed-up of the iterative solution technique for both the laminar and turbulent case
using the Jacobian-free Newton–Krylov method are subsequently investigated.
In the rows of Table I the work, measured in residual evaluations, is shown for the �rst

stage of the �rst time step (later time steps showed similar results) for various combinations of
iterative solution techniques for laminar �ow with a time step of 0.5. The columns show after
how many original non-linear MG cycles the iterative solver is switched on. Between brackets
the total number of MG cycles and Newton cycles are listed. For this case unpreconditioned
GCR5-20, which uses 5 vectors in the �rst Newton and 20 at all the rest, and GCR5 switched
on after 6 MG cycles are the best, leading to a speed-up of 30% compared to the original
solver. As a reference: use of full GCR, which is e�ciency-wise optimal, but impractical due
to the immense memory requirements, required 78 residual evaluations. The two forms of
preconditioning: 1 cycle of FAS MG or 2 recursive iterations of GCR decreased the number
of Newton iterations, but at increased overall costs.
The same trends are found for the turbulent �ow case with a time step of 0.5 shown in

Table II. Although for this harder case GCR5-20 outperforms GCR5. Again the two types of
preconditioning are too expensive to lead to an overall performance improvement.
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Table II. Work for turbulent �ow problem using various iterative solvers.

7 MG �rst 10 MG �rst

FAS MG 276 (23+0) 276 (23+0)
GCR5-20 349 (7+12) 204 (10+5)
GCR5 399 (7+63) 210 (10+18)
GCR5 rec2 594 (7+34) 230 (10+8)

4. CONCLUSIONS

It can be concluded that with a minimal coding e�ort e�ciency can be increased up to
30% combining the original non-linear FAS MG and a Jacobian-free Newton–GCR method.
However, for this the methods should not be nested but be applied consecutively. In the �rst
iterations the convergence ratio of FAS MG is hard to beat, therefore FAS MG should be
used. At some point, when the convergence rate has dropped, GCR should be switched on.
Preconditioning by the full FAS MG scheme or by applying GCR recursively does not lead
to a more e�cient method.
There are still issues for further research. To begin with, the indicator for the switch from

MG to Krylov should be further investigated. Possibilities are absolute or relative residual
or absolute or relative convergence rates. Secondly, less expensive preconditioners should
be investigated. Finally, a full automatic convergence controller should be designed, which
performs the optimization of the iterative solution technique without any interference of the
user.
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